Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury.
نویسندگان
چکیده
Transplantation of exogenous cells is one approach to spinal cord repair that could potentially enhance the growth and myelination of endogenous axons. Here, we asked whether skin-derived precursors (SKPs), a neural crest-like precursor that can be isolated and expanded from mammalian skin, could be used to repair the injured rat spinal cord. To ask this question, we isolated and expanded genetically tagged murine SKPs and either transplanted them directly into the contused rat spinal cord or differentiated them into Schwann cells (SCs), and performed similar transplantations with the isolated, expanded SKP-derived SCs. Neuroanatomical analysis of these transplants 12 weeks after transplantation revealed that both cell types survived well within the injured spinal cord, reduced the size of the contusion cavity, myelinated endogenous host axons, and recruited endogenous SCs into the injured cord. However, SKP-derived SCs also provided a bridge across the lesion site, increased the size of the spared tissue rim, myelinated spared axons within the tissue rim, reduced reactive gliosis, and provided an environment that was highly conducive to axonal growth. Importantly, SKP-derived SCs provided enhanced locomotor recovery relative to both SKPs and forebrain subventricular zone neurospheres, and had no impact on mechanical or heat sensitivity thresholds. Thus, SKP-derived SCs provide an accessible, potentially autologous source of cells for transplantation into and treatment of the injured spinal cord.
منابع مشابه
Mesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury
Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...
متن کاملEx vivo myelin water and DTI measurements of SKP-SC transplanted cell therapy in contused rat spinal cord: correlation with histology
Introduction Schwann cells differentiated from skin-derived precursors (SKP-SCs) have been shown to promote histological and functional recovery in a contusion model of rat spinal cord injury [1]. Cellular bands of SKP-SCs bridge the lesion site which promote axon growth ensheathed by peripheral (Schwann cell) myelin of endogenous as well as transplant origins. In this work, we assess the myeli...
متن کاملDecrease in Cavity Size and Oligodendrocyte Cell Death Using Neurosphere-Derived Oligodendrocyte-Like Cells in Spinal Cord Contusion Model
Background: Oligodendrocyte cell death is among the important features of spinal cord injury, which appears within 15 min and occurs intensely for 4 h after injury, in the rat spinal contusion model. Accordingly, the number of oligodendrocytes progressively reduced within 24 h after injury. Administration of oligodendrocyte-like cells (OLCs) into the lesion area is one of the approaches to coun...
متن کاملComparison of human adipose-derived stem cells and chondroitinase ABC transplantation on locomotor recovery in the contusion model of spinal cord injury in rats
Objective(s):Spinal cord injury (SCI) is one of the most serious clinical diseases and its treatment has been a subject of interest to researchers. There are two important therapeutic strategies in the treatment of SCI: replacing lost tissue cells through cells implantation and scar elimination. Therefore, in this study we used human adipose-derived stem cells (hADSCs) implantation and injectio...
متن کاملInduction of functional recovery by co-transplantation of neural stem cells and Schwann cells in a rat spinal cord contusion injury model.
OBJECTIVE To study the transplantation efficacy of neural stem cells (NSCs) and Schwann cells (SC) in a rat model of spinal cord contusion injury. METHODS Multipotent neural stem cells (NSCs) and Schwann cells were harvested from the spinal cords of embryonic rats at 16 days post coitus and sciatic nerves of newborn rats, respectively. The differential characteristics of NSCs in vitro induced...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 36 شماره
صفحات -
تاریخ انتشار 2007